用 OpenCV 和 Face-Recog 进行实时人脸识别
这是我在 medium 上写的第一篇文章,主题是人脸识别。你可以点击 这里 从我的 Github 存储库中获取本文的代码。
导入
首先,导入 OpenCV (点击这里进行安装)、 numpy 和最重要的 face_recognition。
import face_recognition
import cv2
import numpy as np
访问网络摄像头并加载样例图像
首先,通过 openCV 的 VideoCapture(0) 来使用网络摄像头,然后,加载样例图像或其他想识别的图像,可以使用 face_recog lib 对其进行编码。
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it.
pavan_image = face_recognition.load_image_file("Pavan-1.jpg")
pavan_face_encoding = face_recognition.face_encodings(pavan_image)[0]
# Load a second sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
为已知的编码创建一个数组
如标题所述,创建一个数组(就是这么简单)并初始化几个变量。
# Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
pavan_face_encoding
]
known_face_names = [
"Barack Obama",
"Pavan Kunchala"
]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
读取、调整大小和处理
在 while True 的状态下读取帧,调整大小(以便图片能实时工作),并处理该图片以便能比较脸部编码。我使用的是最小距离公式,所以能够轻松比较脸部。还有更好的方法,大家可以自己试验一下~
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
以上就是所有内容~(截止目前~)
补充: 我知道还有很多需要改进的地方,尤其是代码,我会尽快更新代码。各位可以将建议发送到我的 电子邮件 (内容可以是改进建议或者感兴趣的主题),如果想跟我谈论本文这个主题或任何 ML(机器语言) 或计算机视觉主题,请通过 LinkedIn 私信我( Linkedin )~
原文作者:Pavan Kunchala
原文链接:https://medium.com/analytics-vidhya/real-time-face-recognition-using-opencv-face-recog-507d355e0018